Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 119(13): 132501, 2017 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-29341708

RESUMO

The decay path of the Hoyle state in ^{12}C (E_{x}=7.654 MeV) has been studied with the ^{14}N(d,α_{2})^{12}C(7.654) reaction induced at 10.5 MeV. High resolution invariant mass spectroscopy techniques have allowed us to unambiguously disentangle direct and sequential decays of the state passing through the ground state of ^{8}Be. Thanks to the almost total absence of background and the attained resolution, a fully sequential decay contribution to the width of the state has been observed. The direct decay width is negligible, with an upper limit of 0.043% (95% C.L.). The precision of this result is about a factor 5 higher than previous studies. This has significant implications on nuclear structure, as it provides constraints to 3α cluster model calculations, where higher precision limits are needed.

2.
Phys Rev Lett ; 102(23): 232502, 2009 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-19658929

RESUMO

The 3He(alpha,gamma)7Be reaction presently represents the largest nuclear uncertainty in the predicted solar neutrino flux and has important implications on the big bang nucleosynthesis, i.e., the production of primordial 7Li. We present here the results of an experiment using the recoil separator ERNA (European Recoil separator for Nuclear Astrophysics) to detect directly the 7Be ejectiles. In addition, off-beam activation and coincidence gamma-ray measurements were performed at selected energies. At energies above 1 MeV a large discrepancy compared to previous results is observed both in the absolute value and in the energy dependence of the cross section. Based on the available data and models, a robust estimate of the cross section at the astrophysical relevant energies is proposed.

3.
Phys Rev Lett ; 97(1): 012501, 2006 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-16907369

RESUMO

The gamma decay of the giant dipole resonance (GDR) in the 132Ce compound nucleus with temperature up to approximately 4 MeV has been measured, using the reaction 64Ni + 68Zn at E(beam) = 300, 400, and 500 MeV. The gamma and charged particles measured in coincidence with recoils are consistent with a fully equilibrated compound nucleus emission. The GDR width, obtained with the statistical model analysis, is found to increase almost linearly with temperature. This increase is rather well reproduced within a model including thermal shape fluctuations and the lifetime of the compound nucleus.

4.
Phys Med ; 17 Suppl 1: 124-7, 2001.
Artigo em Inglês | MEDLINE | ID: mdl-11770527

RESUMO

The use of existing detecting systems developed for nuclear physics studies allows collecting data on particle and ion production cross-sections in reactions induced by Oxygen and Carbon beams, of interest for hadrontherapy and heavy-ion risk assessment. The MULTICS and GARFIELD apparatus, together with the foreseen experiments, are reviewed.


Assuntos
Carbono , Íons Pesados , Oxigênio , Monitoramento de Radiação/instrumentação , Desenho de Equipamento , Raios gama , Itália , Física Nuclear , Monitoramento de Radiação/métodos , Radioterapia , Medição de Risco , Voo Espacial
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...